

Schottky Measurements in RHIC Peter Cameron - BNL

Outline

HF Schottky Hardware - 2GHz

HF Schottky Measurements

LF Schottky Hardware – 245MHz

LF Schottky Measurements

Conclusions

High Frequency Schottky

- Built by LBNL follow on to FNAL system
- Described in W Barry et al, EPAC 98 (and references therein)
- Charge is quantized, rootN fluctuations give clumps (limits)
- Gold in RHIC gives +19dB relative to protons
- Three cavity modes
 - TM210 Horizontal 2.067GHz
 - TM120 Vertical 2.071GHz
 - TM111 Longitudinal 2.721GHz
- Cavity properties
 - $Q_{loaded} \sim 5000$, Transverse impedance $\sim 9 M\Omega/m$
- DAQ Mix to 2MHz, examine with HP89410 FFT box

HF Schottky Cavity

First RHIC Transition Crossing

-1 sec

Transition

+2 sec

First RHIC Transition WCM

Clean Schottky Spectra

At Store, S/N ~ 30dB

> Yellow horizontal

Blue horizontal

Schottky Tune Measurement

Yellow H .205

Blue H .247

Yellow V .244

Blue V .225

HF Schottky Tune up the Ramp

HF Schottky with Polarized Protons

Down Ramp Chromaticity

HF Schottky at Store - RHIC 2001

transition Flat top

200MHz on

Chromaticity during Store (protons)

Fit Dependence of Chromaticity

Emittance and deltap/p thru store

Schottky, Horz, Yel; dppM3547;179

HF Schottky Lessons Learned

- Saturation due beam steering and effect of 200MHz RF
- Coupling affects calculated tune values
- Sensitivity to beam loss
- Mixers out of tunnel, need separate RF synchronous LOs
- Software Improvements to tune, chromaticity and emittance calculations
- Avoid HP DSAs good studies tool, but poor dedicated DAQ;
 \$\$, poor data access, network storms, free for studies,...
- VME-based system, 1 DSP/FPGA per channel, TMS320C6701, averaged FFTs to control system
 - Pentek actually delivered a beta version, many problems to make this work

Resonant BPM

- M. Kesselman et al PAC 2001
- Stub-tuned 1/4 wave resonator
- Simulated in Spice
- frequency $\sim 240 \text{MHz} (8.5 \text{xRF})$
- $Q_{loaded} \sim 100$ optimal coupling
- In-tunnel hybrid for Σ and Δ
- Resonate difference mode not sum mode signal at revolution line
- Moveable minimize difference mode signal at revolution line
- Resonate above coherent spectrum

Moveable Resonant BPM

LF Schottky at Injection

Span 78KHz 5dB/div $\delta q = \eta N \delta p/p$

~ 2 KHz

 $\eta \sim .007$

 $N \sim 3060$

 $\delta p/p \sim .001$

LF Schottky on the Ramp

Injection

Transition

LF Schottky Lessons Learned

- Saturation due beam steering and effect of 200MHz RF
 - feedback on moveable BPM resonant, too slow
 - mixers in tunnel, no active elements before 455KHz filter
- Sensitivity to beam loss
- Splitters and Mixers share signal with PLL, need separate RF synchronous LOs for all blue and yellow
- Software Improvements to chromaticity and emittance calculations
- Avoid HP DSAs poor data access, network storms, free for studies,...
- VME-based system, 1 DSP/FPGA per channel, TMS320C6701, averaged FFTs to control system

Conclusions

- Schottky is a useful diagnostic at RHIC
- Not fully utilized by operations
 - Problems with new Pentek DAQ this run
 - Saturation and reliability
 - 200MHz RF
 - beam steering
 - Habit
- Unified Diagnostics Data Displays

Conclusions

Many Lagrand Lagrand Frid

